Volume 3 ; Issue 1 ; in Month : Jan-June (2020) Article No : 123
Melendez QM, Wooten CJ, Krishnaji ST, et al.

Abstract
High levels of cholesterol, especially as low-density lipoprotein (LDL), are a well-known risk factor for atherosclerotic-related diseases. The key atherogenic property of LDL is its ability to form atherosclerotic plaque. Proprotein convertase subtilisin/kexin-9 (PCSK9) is an indirect regulator of plasma LDL levels by controlling the number of LDL receptor molecules expressed at the plasma membrane, especially in the liver. Herein, we performed a combination of affinity chromatography, mass spectrometry analysis and identification, and gene expression studies to identify proteins that interact with PCSK9. Through these studies, we identified three proteins, alpha-1-antitrypsin (A1AT), alpha-1-microglobulin/bikunin precursor (AMBP), and apolipoprotein H (APOH) expressed by C3A cells that interact with PCSK9. The expression levels of A1AT and APOH increased in cells treated with MITO+ medium, a condition previously shown to affect the function of PCSK9, as compared to treating with Regular (control) medium. However, AMBP expression did not change in response to the treatments. Additional studies are required to determine which of these proteins can modulate the expression/function of PCSK9. The identification of endogenous modulators of PCSK9’s function could lead to the development of novel diagnostic tests or treatment options for patients suffering hypercholesterolemia in combination with other chronic metabolic diseases.

Full Text Attachment

Views : 485      Downloads : 25

RSS